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Abstract—The effective viscosity of a dilute suspension of rigid n-dimensional hyperspheres in a viscous fluid
at small particle Reynolds numbers is determined; the result being

+2
pea= (14252 4).

Expressions are also given for the n-dimensional Stokes velocity and pressure fields for a hypersphere in a pure
straining flow.

INTRODUCTION

In teaching suspension mechanics as a topic in a course on transport processes, one is
confronted with the difficulty of assigning a homework problem which is doable in a time scale
small compared with that of a normal doctoral thesis. After having presented Einstein’s
correction to the viscosity of a dilute suspension of spheres, the natural homework problem is
that for 2-dimensional rigid cylinders (a solution to Stokes equations existing in this case), and
the n-dimensional case provides good practice with cartesian tensorial manipulations and the
summation convention. Thus, the motivation for this brief communication.

We consider a force-free, couple-free hypersphere of radius a located at the origin in a pure
straining motion with rate of strain tensor Ej;, which is symmetric and traceless. Making use of
the linearity of the Stokes equations and the fact that the only vector present is x the position
vector, and following Brenner (1981), we may write for the velocity and pressure fields in
cartesian tensor notation with the summation convention

ui(x) = Ejx; + Vi By, 1
p(x)=p~+ PyEj. 21

Here E;x; and p” are the undisturbed velocity and pressure fields at infinity, and V;; and Py,
being purely geometric, are given by

1 ™D (n4+2) ,xx a\’
Vi = —5(8ijxk + 8ux;) (%) "(—2_) a W{% [1 - (7) ] , (3
Py = p(n+2a" 35k, [4

where r=|x| and p is the fluid viscosity. Substituting n=2 or n =3, one recovers the
well-known results for a cylinder or sphere. The case n =1 is degenerate because E; (being
traceless) must be zero; there can be no straining motion in one dimension.

To compute the effective viscosity of a dilute suspension of hyperspheres we form the
volume average of the stress tensor o;; (Batchelor 1970) to obtain

(g3)=LT.+2u(E;+ N(Sij> , (5]
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where () denotes volume average, N is the number density hyperspheres, and (S;)=
1/N 2., S; is the average extra particle stress; the sum being over all particles in the volume.

L.T. stands for an isotopic term which is of no importance. For rigid particles the extra particle
stress Sj; is given by

1
Sij= f {Uikxi"k ~3 5:,0:kxunk} ds, (6]
the integration being over the hypersphere surface. A direct calculation of [6] gives

a" 2n"?

Sii = Pv(" +2) "n_ Eij

where I'(x) is the gamma function. Whence, the effective viscosity
n+?2
par= (14232 4) 7

where

2,”'!/2

-NZ
¢=N—

is the volume fraction of hyperspheres. n =3 gives the Einstein correction of 5/2¢ (Einstein
1906), and n = 2 gives the result for rigid cylinders first reported by Belzons et al. (1981).

REFERENCES

BATCHELOR, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech.
41, 545-570.

BeLzons, M., Brang, R., BouiLror, J-L. & Camoin, C. 1981 Viscosité d’une suspension diluée et
bidimensionnelle de sphéres. C.R. Acad. Sc. Paris 292 1, 939-944.

BRrenNER, H. 1981 The translational and rotational motions of an n-dimensional hypersphere
through a viscous fluid at small Reynolds numbers. J. Fluid Mech. 111, 197-215,

EINSTEIN, A. 1906 Eine neue Bestimmung der Molekiildimensionen. Annin. Phys. 19, 298-306
(and 34, 591-592).



